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ABSTRACT 

The Apollo command module aft heat shield, a 
composite laminated torispherical shell, was ideal- 
ized as a network of curved beams. A stiffness 
matrix method was  developed in torispherical coor- 
dinates to analyze the structural model for thermal 
and mechanical loadings. Correlation of the analyti- 
cal method was demonstrated with a closed-form 
solution of the Apollo aft heat shield under a cold- 
soak thermal condition. Analyses of the structure 
were also correlated with data from a static test. 
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STIFFNESS MATRIX SOLUTION FOR SHELLS OF REVOLUTION 

POSSESSING VARIABLE THICKNESS HEAT PROTECTION 

By Frederick Jean Stebbins 
Manned Spacecraft Center 

SUMMARY 

A composite laminated torispherical shell was idealized as a network of curved 
A stiffness matrix method was developed to analyze the structural model. beams. 

The method was developed in torispherical coordinates which a r e  amenable to the cur- 
rent family of manned spacecraft. 
a bond, two stainless-steel face sheets, and a 2-inch-thick stainless-steel core. 

The laminated shell was composed of an ablator, 

A structural model of the Apollo aft heat-shield substructure was analyzed for a 
variety of thermal and mechanical loadings. A correlation was made of the analysis 
with test data and two independent digital computer analyses. An analysis of a sym- 
metrical model of the Apollo aft heat shield under cold-soak conditions was compared 
with a closed-form solution to establish a link with "exact" theory. Selected s t resses  
and displacements were used in the comparisons to demonstrate the accuracy of the 
procedure. 

INTRODUCTION 

The high strength-to-weight ratio of shells has been effectively utilized in space- 
craft design. Elements of the common shells of revolution, that is, spheres, cylin- 
ders, tori, and cones, a r e  assembled into spacecraft structural shapes. The Apollo 
spacecraft, for example, is a contiguous assembly of two spherical sections, a trun- 
cated cone and a toroidal section. Hyperthermal conditions during reentry require 
a heat-protective system surrounding the structural shell. For heat protection, the 
United States spacecraft have commonly had a variable thickness ablative material 
which forms a nonstructural char during reentry. The mechanical properties of the 
ablator in the virgin state a r e  highly temperature-dependent. Contemporary space- 
craft design features a stainless-steel sandwich substrate. The ablator and substrate 
form a complex laminated shell which is rotationally and meridionally asymmetric. 

The structural design of spacecraft presents many interrelated problem areas. 
At the time of maximum dynamic loading during the launch phase, the solution to the 
problem involves more than static-load considerations. 
the spacecraft must be established and the possibility of buffeting investigated. The 
translunar and reentry flight phases present two opposite extremes in thermal loading. 

The dynamic mode shapes of 
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The operation of thermally deformed hatches is also a problem. These hatch doors 
must be used during the mission for extravehicular activity by the astronauts and for 
operation of equipment such as the astrosextant. The fiery reentry phase places ex- 
treme requirements on the spacecraft materials; however, the actual landing creates 
more structural problems than any other phase of the spaceflight mission. These 
structural problems of landing begin with the jolt of the arresting parachutes. Even 
though landing represents the terminal phase of the mission, it is most important that 
the watertight integrity of the spacecraft be maintained since the spacecraft must float 
until it is recovered. 

The requirements imposed by aerodynamic considerations have resulted in geo- 
metric shapes which a r e  not structurally desirable. In the cases of the Mercury, 
Gemini, and Apollo vehicles, the structure of the spacecraft has involved a prominent 
torispherical section. From the viewpoint of the structural engineer, it is desirable 
that the radius of the spherical area be small in order to minimize the water impact 
during landing. However, aerodynamic stability requirements necessitate a relatively 
large spherical radius. The necessary compromise between aerodynamic and struc- 
tural objectives emphasized the need for accurate structural analysis. 

Most of the analytical work in this 
area has been confined to the studies of 
shells of revolution (refs. 1 to 5) .  The 
objective of the research presented in this 
report was to develop a method of static 
structural analysis for a class of asym- 
metric shells subjected to arbitrary loads 
and temperatures. The thermal loads 
were limited to inplane forces and moments 
having vectors that are tangent to the shell 
midsurface. The thermal gradient may be 
arbitrary in the thickness direction of the 
shell and the surface coordinates. The 
shell may have variable meridional and 
circumferential stiffness properties. Since 
spacecraft, as well as airplanes, have a 
plane of symmetry relative to the flight 
path (fig. l), the attendant reduction of 
unknowns was  made. The application of 
the present method of static structural 
analysis of asvmmetric shells under arbi- 

/ 

Figure 1. - Apollo spacecraft. trary loading was made to the Apollo aft 
heat-shield substructure. Theoretical and 
and experimental correlation is demon- 
strated. 
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SYMBOLS 

A one end of the structural element AB 

transformation matrices of the typical structural element, that is, 
A.. is the transform from end j to end i (ref. 6) 
4 

one end of the structural element AB 

beam width normal to 0 or  cp direction, in. 

B 

b b  
0’  cp 

constants C to C16 as used in table A-I 1 C 

d. distance from the centroid of composite structure to ith laminate, in. 
1 

E 

BB 

modulus of elasticity, psi  

flexibility matrix of the typical structural element for end A fixed 
and end B free 

G modulus of rigidity, psi 

4 I moment of inertia, in 

4 geometrical torsion constant, in Je 

E joint stiffness matrix 

stiffness submatrices of the typical structural element for end B 
fixed and end A free,  and for end A fixed and end B free, re- 
spectively (ref. 6 )  

kAA’ kB13 

stiffness submatrices of the coupling actions at  end A due to dis- 
placements at end B, or  for coupling actions at end B due to 
displacements at end A (ref. 6) 

kAB7 kBA 

kAB 

P17 P27 PQ force in R, cp, and 0 directions, respectively, lb 

total stiffness matrix of the member AB 

pq’ P57 P6 moment about R, cp, and 0 axes, respectively, in-lb 
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'A' 'B 

PBA~ PBB 

pAO' 'BO 

r 

S 

T 

TO 

t 

u1, u2, u3 

u4, 

uA' UB 

UBO' uAO 

U. 
1 

CY 

Y1 '  y2 

0 

column vectors of internal actions at end A and at end B respec- 
tively, of a structural element AB 

column vectors of actions at end B due to loads at end A and at 
end B 

column vectors of applied actions at end A and at end B of a 
structural element AB 

group of action components p1 to p6 (ref. 6) 

externally applied load to beam AB, lb o r  in-lb 

linear torispherical coordinates of sphere, of torus, and of torus 
reference ring, respectively, in. 

- 
R value at joint centroid, R = AR + RB (fig. 6), in. 

radius, in. 

cross-sectional area, in 

temperature, "F 

2 

zero s t ress  temperature of composite structure, "F 

thickness, in. 

displacement in R, cp, and 0 directions, respectively, in. 

rotation about R, cp, and 0 axes, respectively, rad 

column vectors of internal displacements a t  end A and at  end B 

column vectors of applied displacements at end B and at end A 

group of joint displacement components u1 to u (ref. 6) 6 

coefficient of thermal expansion, in/in/" F 

mechanically equivalent thermal load parameters (defined by 
eqs. 18 and 19) 

angular torispherical coordinate, deg 
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V 

PC 

Subscripts: 

a 

b 

C 

e 

fP 

i 

j 

n 

R, cp, e 
S 

Poisson ratio 

density of core material, lb/in 3 

3 gross core density, lb/in 

meridional stress, psi 

angular torispherical coordinate, deg 

ablator 

bond 

core (moduli based on gross cross section) 

equivalent 

faceplate 

the ith laminate 

joint 

the nth laminate 

torispherical coordinates 

substrate 

THEORY 

Structural Idealization 

It was assumed that plane stress conditions existed in the class of laminated 
shells under investigation. The heat-protective material had a thermal gradient 
through its thickness. The temperature-dependent mechanical properties of the abla- 
tor were  represented by mu4tiple laminates, each at a constant temperature (fig. 2). 
Additional laminates were used to represent a bond layer and the elements of the sand- 
wich construction. The temperature gradient through the shell thickness was repre- 
sented in a step-function manner in which each of the laminates of figure 2 was at a 
specific temperature (fig. 3). 
beams (fig. 4). 

The shell structure was idealized by a network of curved 
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Figure 2. - Exploded view 
of composite structure. 

Figure 4. - Structural idealization of 
the Apollo aft heat shield. 

Figure 3. - Temperature distribution 
with step functions in the R direc- 
tion. 

The tosispherical shell, idealized in 
figure 4, is the general structural shape 
used in the theoretical development of the 
present research; however, a similar ap- 
proach could be followed for other shapes. 
The theoretical development of the stiff- 
ness matrix for the typical beam element 
is presented in appendix A, and the neces- 
sary transformations appear in appendix B. 

Coordinate System 

A torispherical coordinate system 
was used to define the geometry of the 
structural model shown in figure 4. In the 
spherical coordinate system, a point in 

space is described by its distance and direction from a fixed reference point. 
coordinates are R, q, and 8, which represent a distance and two angles, respec- 
tively. Torispherical coordinates have the same two surface coordinates <p and 8, 
but the coordinate R must be redefined as R = f(R1, R2), in which R1 is the torus ra- 
dius measured from the torus reference ring and R 2 is the distance from the refer- 
ence point to the loci of points describing the torus reference ring. If R1 is set equal 

to zero, the torispherical coordinate system is reduced to the more familiar spherical 
coordinate system. 

The 

6 



Procedure 

A stiffness matrix method was  followed. In the formulation of the procedure, it 
was necessary to obtain the stiffness matrix of the typical structural element. Since 
a flexibility matrix w a s  easier to obtain, the stiffness matrix was determined by the 
inversion of the appropriate flexibility matrix (ref. 6). In matrix notation, this may 

be expressed as kBB = 

plication of the method of consistent distortion (see fig. 5 and appendix A for the devel- 
opment of the flexibility matrix fBB). In general, a displacement at one end of the 

- ’. The flexibility matrix was assembled through the ap- BB 

N A S A - 5 - 6 6 - 1 1 5 4 9  DEC 6 
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R - Shear I B - Axial  
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1 in-lb 
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Figure 5. - Unit loadings for influence coefficients to type 1 beam elements. 

typical structural element wi l l  cause actions to be realized at both ends of the element. 
These actions are shear force normal to the shell midsurface, axial force tangent to 
the shell midsurface, shear force tangent to the shell midsurface, bending moment nor- 
mal to the shell midsurface, torsional moment, and bending moment tangent to the 
shell midsurface. If the typical structural element AB, fixed at end A, undergoes a 
unit displacement at end B, six actions occur at end A and sixactions occur at end B. 
Thus, kBB is obtained through successive unit displacements at end B while end A 
is held in a fixed condition. A coupling stiffness matrix kAB relates the actions at 
end A due to unit displacements at end B. The total stiffness matrix for a member 
AB is 

kAB = 
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The beam element stiffness matrix kAB is of the 12th order. A transformation ma- 
trix AAB was used to express the submatrices kAB, kBA, and kAA as a function 

of kgB (ref. 6). Thus 

k~~ = - A ~ ~ $ ~  

k~~ = k i ~  
k~ = A ~ ~ % ~ A L ~  

The transformation matrix AAB is developed in reference 7. The actions applied to 
the joint by the beams are shown in figure 6. The action-displacement matrix is 

NASA-S-66 -11567  DEC 6 

I 

Figure 6. - Transformation matrix 
geometry. 

The stiffness matrix method is char- 
acterized by equilibrium equations ex- 
pressed in terms of unknown displacements. 
The equilibrium equations of this method 
are expressions of joint equilibrium. The 
joints are loaded by the beam elements with 
force expressions of the form of equation (3). 
External loads a re  introduced directly to 
the joints. Thermal loads a r e  introduced to 
the joints in terms of mechanically equiva- 
lent loads. The thermal load manipulation 
will be discussed later in this section. In 
matrix notation, a joint equilibrium equation 
appears as hi + po = 0; where 

joint stiffness matrix, that is, the sum of the 
is the 

stiffnesses of the beams entering the joint. 
sented by ui and the externally applied loads by po. 

The displacements of the joints are repre- 

The typical joint equilibrium equation involved only orthogonal members. Each 
joint had an orientation R, q, 0, where R was the value of the R coordinate at the 
joint centroid. A joint and all type 1 and type 3 members entering the joint had a com- 
mon coordinate system, but type 2 and type 4 beam element data had to be rotated 
through the angles 8 = 90" and cp = q., respectively. Type 1 and type 3 beam 

J 
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elements were oriented with joint 9 coordinate direction, and type 2 and type 4 beam 
elements were oriented with the joint 8 Coordinate direction. A transformation of 
type 2 beam element actions was required so that the actions might be expressed as 
functions of the joint coordinates. A similar relationship was  true between type 3 and 
type 4 beam elements. Joints occurring on the outer toroidal boundary were  loaded by 
three members instead of four. The joint in which the most complex transformation 
arose was the joint located at R, 0, 0. 

The joint at R, 0,O was unique in that only type 1 nonorthogonal members inter- 
sected it. The joint orientation was taken as %, 0,O. If pi represents the action 
components of a member in terms of the joint coordinate system and 8 is the member 
orientation relative to the joint, then 

I 
I p i  = p2 COS e - p3 sin e 

p i  = p2 sin e + p cos 8 3 
(4) 

P i  = P4 

pk = p5 cos 8 - p6 sin e 

pb = p s i n e  + p  cos 0 5 6 

The above relationships may be expressed more concisely as functions of the transfor- 
mations discussed in appendix B 

The forces at  end A of the beam elements were rotated, and the forces at end B 
were premultiplied by the identity matrix only. 

The assembly of the joint equilibrium equations was accomplished by the premul- 
tiplication of the matrix of member stiffnesses (expanded stiffness matrix) by a conmec- 
tion matrix. The matrix of member stiffnesses postmultiplied by the displacement 
vector yielded the actions on the beam. The use of a connection matrix is discussed 
in reference 6. The order of the resulting square matrix was  reduced through the ap- 
plication of boundary conditions. 
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Two sources existed for the reduction of the unknowns prior to the solution of 
the set of joint equilibrium equations. These sources were boundary conditions and 
symmetry conditions. The displacement functions which describe an external support 
a r e  fully described input quantities. For example, complete fixity of a joint may be 
realized by setting u1 through u6 = 0. A joint hinged along a circumferential line is 

known to have zero displacements in the u through u5 directions. Settlement of the 
external supports, that is, u # 0, is also a valid boundary condition. If elastic exter- 
nal supports are encountered, the spring rates of the supports would be required. The 
displacement u. in question would then be associated with the spring rates in the j o b t  

equilibrium equations. 

. 

1 

1 

Symmetry conditions may be separated into the following: (1) the special case of 
the joint at R, 0, 0, and (2) the remaining joints on the diameter defining the mir ror  
image boundary, that is, when 8 = 0" .  The mirror  image symmetry was  the result  of 
a geometrical orientation of the capsule relative to the flight path in a manner similar 
to the orientation of an airplane to its flight path. In the special case (l), each beam of 
orientation (a, q , 0 )  occurred in company with a corresponding beam of orientation 
(a, cp, -0). The displacements at the plane of symmetry for  both cases a r e  

u3 ::::! = 0 

I u4 = o  

u5 = o  

Mechanical loads were introduced directly into the joint equilibrium equations. 

Equivalent joint loads were calculated from the reactions of the loaded 
Distributed load systems were approximated by a set of concentrated loads applied 
at the joints. 
fixed-ended beam elements. 

The thermal gradient should be considered before discussing the calculation of 
the mechanically equivalent thermal loads. The temperatures of reentry vehicles of 
the type considered have the most significant gradient in the thickness direction of the 
ablator. This gradient may be approximated by dividing the ablator into several 
layers, each at a constant temperature, so that a step function results. It had been 
previously determined that the variation of temperature through the ablator thickness 
is parabolic, while the substrate temperature is essentially constant. The temperature 
of ablation is 1000" F. 
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The temperature of ablation determines the maximum temperature during re- 
entry. This temperature is not exceeded because of the formation of a char on the 
outer surface and because of the emission of cooling gases which limit the maximum 
temperature. 

Figure 3 illustrates the temperature distribution through the thickness as repre- 
sented by the approximating step function. The temperature in the ith layer of n lay- 
e r s  is given by 

. T~ = T J ~ ,  e )  + 1000 - T~( (P ,  [ (7) 

The application of thermal loads was  accomplished through a set  of mechanically 

These mechan- 
equivalent thermal loads. The loads were  equal in magnitude but opposite in sense 
from the fixed-ended reactions of the thermally loaded beam element. 
ically equivalent thermal loads were  designated 

and 

- 
'BO - 
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The mechanically equivalent thermal loads at a joint were  the sum of the fixed- 
ended actions of all the thermally loaded curved beams entering the joint. The solution 
of a thermally loaded curved beam was divided into two load conditions; (I) that due 
to uniform thermal strain, and (2) the nonuniform strain associated with thermal mo- 
ment. The thermal moment a t  end B due to nonuniform thermal strain of type l and 
type 3 beams was designated 

The restraint necessary to fix the ends of a type 1 or type 3 curved beam under uni- 
form thermal strain is developed as follows: 
tions at the free end B (fig. 6) are 

if end A is fixed, the thermal transla- 

The compatibility equations may be written through the use of the previously developed 
element flexibility submatrix f and the above thermal displacements. BB 

Solving for the desired thermal restraints at end A, it is found that 

pBo = - k  u BB BO 

12 

(13) 



I 

< 

-1 = kBB. In expanded notation, pBo is BB since f 

“BlO 

’B30 

pB40 

pB 50 

pAIO\ 

pA20 

pA30 

pA40 

’A 50 

PASO, 

) =  -k Ry BB 2 

- - 

. - cos PAB‘ 

;in qAB 

0 

0 

0 

0 

The moment b y 

be superimposed on the above p 
tions of fixity under a uniform thermal strain. The loads at end A of type 1 andtype 3 
beams are related to those defined for end E3 as follows: 

described in equation (10) for the nonuniform thermal strain, must 
value which was necessary to maintain the condi- 

CP 1’ 
B60 

PB10 

-’B20 

’B3 0 

pB40 

’B50 

-pB60 
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The mechanically equivalent thermal loads from type 2 and type 4 beams may be 
similarly defined in terms of the joint coordinates as 

pA20 

pB 10 

'B20 

pB30 

pB40 

pB 50 I 'B60 

'A50 

1 - COS eAB 
sin 0 

- 
=Ry2AB'B-kBB[ '1 + lAB'B 

0 

0 

0 

-cos sp. 

0 

sin cp 
j 

where is sin <p for type 2 and type 4 beams. The thermal loads were developed 

in the coordinate system of figure 7 and then transformed through premultiplication 
by ABtB. The mechanically equivalent actions occurring at end A of the beam a r e  

j 

NASA-S-67-530 

.-. 
The joint at end A i s  shown, but 

coordinates are the joint coordinates. 
\Ti 1 end B is similar. The R', d,  and 0 '  

f 

\ 

Figure 7. - Joint and type 2 coor- 
dinate relationship. 

The definition of the mechanically equivalent thermal loads has involved the use 
of two as yet undefined parameters. They are 

1 
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and 

ta z~ Ea + $-,Eb + 2 t  fP E s 
i 

It should be noted that all laminates were temperature-dependent with respect to 
their mechanical properties and the coefficient of thermal expansion. The temperature 
of the ith laminate of n laminates has been previously described in this section. With 
reference to figure 6, it may be observed that the thermal restraint forces p20 had 

p50 a r e  equal to zero) in order to satisfy equilibrium. The se t  of thermal restraint 

forces  for any beam element formed a self-equilibrated force system. The thermal 
moments p and p were obtained by summing the product of the axial restraint 
force on each laminate and the distance to the neutral axis. 

to be supplemented by a set of thermal shear restraint forces pl0 (P307 P407 and 

50 60 

EXAMPLE APPLICATIONS OF THE PROCEDURE 

Solutions to example problems solved by the method presented in this report 
were compared with other work. A limited amount of test data was obtained on a tori- 
spherical shell which had been statically tested (ref. 8). A laminated spherical cap 
under cold-soak conditions w a s  subjected to a closed-form analytical solution (ref. 9). 
A laminated spherical cap and a laminated torispherical shell were analyzed under 
various mechanical and thermal load conditions (ref. 9). Many grid patterns (for ex- 
ample, figs. 8 and 9) were used in the present research to establish convergent solu- 
tions. The specific example problems which were used in the correlation program 
are outlined in the following paragraphs. The results are discussed in the next section. 

Example 1 - Shallow Spherical Cap 
Under Distributed Loading 

The structure for this example was a shallow spherical segment of the Apollo aft 
heat shield which had a radius of 175.6 inches. The structure w a s  composed of two 
0.088-inch stainless-steel face sheets brazed to a stainless-steel honeycomb core. 
The core w a s  3/16-inch square cell of 0.0010-inch foil gage. 

A static test was conducted in which a distributed loading was simulated over a 

It 
torispherical shell that represented the Apollo aft heat-shield substructure (ref. 8). 
The loading simulated the maximum dynamic air loading during the launch phase. 
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Figure 8. - Apollo aft heat-shield 
using a 12, 6 grid pattern. 

28 19 10 1 b 9 i a  27 M 

analysis Figure 9. - Apollo aft heat-shield analysis 
using a 9,4 grid pattern with the struc- 
ture fixed a t  the bolt circle. 

was assumed that the structure was fixed 
at the bolt circle (fig. 10). The bolt circle 
thus formed the boundary of a spherical 
cap. This spherical cap under distributed 
loading was analyzed using a finite- 
difference technique. An analysis of the 
same structure was performed under iden- 
tical conditions using a finite-element 
technique (ref. 9). The two analytical so- 
lutions and the static test results a r e  com- 
pared with results obtained from the 
method presented in this report. 

Example 2 - Torispherical Shell 
Under Distributed Loading 

The complete torispherical structure 
used in Apollo Test Request 209 (ATR-209, 
ref. 8) was supported at the bolt circle and 
at the torus. It was the same sandwich 
structure as was used in example 1. An 
analysis (ref. 9) of this structure under the 
ATR-209 loading condition was used for 
analytic correlation. The static test re-  
sults are also included. 

Wood blacks 

Rod delail 

Figure 10. - ATR-209 pressure 
loading. 
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Example 3 - Torispherical Shell Under Water Impact 

During the water landing of an Apollo command module, the torispherical shell 
is subjected to a pressure loading over a limited area. The extent of the area is a 
function of time (figs. 11 and 12), and is defined by the area of water in contact with the 

Figure 11. - Water impact landing, 
contact angle cp. 

40 - 

2 30 

20 - 
.3 

- 10 - 

I 
I 1 

280 1 , = 10 111. 

240 

(a) Inertial loading. (b) Water 
pressure. 

Figure 12. - Water impact landing pres- 
sure. 

spacecraft at any instant of time. The problem has many dynamic ramifications af- 
fecting the loading, stability, and structural response. 
to the elastic analysis of the quasi-static structure. 

This investigation was  limited 

Example 4 - Shallow Spherical Shell at -150" F 

The same structure was  used in example 4 as in example 1, but an ablator with 
a constant thickness of 1.84 inches was  considered to be bonded to the substrate. The 
structure w a s  subjected to a cold-soak (-150" F) thermal loading. A closed-form so- 
lution to this problem was  reported in reference 9. Gallagher (ref. 9) also used his 
finite-element method to analyze the same structure under identical conditions. Both 
the closed-form and numerical-technique solutions were used for  correlation purposes 
with results obtained from the present method. 

Example 5 - Torispherical Shell at -150" F and at Reentry 

The torispherical shell of example 2, with a variable thickness ablator, was  
exposed to two thermal load environments. The first was under the cold-soak (-150' F) 
conditions of example 4, which are representative of the translunar phase of spaceflight. 
The second thermal loading was a representative reentry hyperthermal load condition. 
In the performance of its function, the ablator limits the exterior temperature to the 
temperature of ablation (1000" F). The stainless-steel sandwich substrate had no 
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gradient and was a l rays  less than 600' F. The gradient through the ablator is para- 
bolic from the 1000 F surface temperature to the temperature of the substrate. 
Gallagher (ref. 9) analyzed this problem using his finite-element method. The analyt- 
ical results for the two thermal load conditions using the present method are corre- 
lated with the work of reference 9. 

The spherical cap example problems and the spherical portion of the torispherical 
shells are actual representations of the substrate of the original Apollo aft heat shield. 
The torus area is composed of an outer shell backed up by corrugated r ibs  o r  "hat'' 
sections. The present method was programed to accept basic laminate geometry and 
to convert these input data to the required stiffness parameters. Each laminate had 
its own moduli and mechanical properties, which were functions of material and tem- 
perature. It was convenient to introduce a structurally equivalent stainless-steel 
sandwich substrate in the torus area. 

The temperature a t  which the composite laminated structure of example 4 and 
The ablator was bonded to the sub- example 5 experienced zero stress was 185" F. 

strate at  a somewhat higher temperature, but a relaxation of s t resses  occurred during 
the curing cycle of the bond. 

DISCUSSION OF RESULTS 

The research described in this paper was applied to the five example structures 
discussed in the previous section. Comparisons of the results are discussed in this 
section. 

Example 1 - Shallow Spherical Cap Under Distributed Loading 

The displacement normal to the surface of the shallow spherical shell for the f i -  
nite difference analysis, the reference 9 analysis, and the present analysis is presented 
in figure 13. The displacement values obtained agree more closely with the ATR-209 
test values than the displacement values from either reference 8 or reference 9. 

A comparison of meridional membrane stresses is presented in figure 14. The 
agreement among the analytical results is very good. Additionally, the s t ress  at the 
apex (0 = 0) obtained from the equation for hydrostatic loading (in ref. 10, Fliigge 
points out that the stress in a shallow spherical shell under hydrostatic loading ap- 

proaches the stress 2t in areas  away from the boundary) is in remarkable agreement 

a t  this point with the value from the present research. The differences between the 
recorded test values and the analytical values were never resolved, and some question 
remains as to the accuracy of the test values. This circumstance, combined with the 
observation that the three independent analyses are in close agreement, indicates a 
good possibility that the higher values are more reliable. The test data and the analyt- 
ical data would aline in a very satisfactory manner if the strain gage factor of 2.06 
were applied to the test values from reference 7. This is also true of the meridional 
outside face sheet s t resses  shown in figure 15. It should be noted that the shape of the 
test data curve is the same as the author's analysis curve and that the 2.06 gage factor 
would again provide the desired alinement. 

PR 
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Figure 13. - ATR-209, u1 displacement 
along axis of symmetry, fixed at bolt 
circle (unpublished data refers to a 
finite difference method). 
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Figure 15. - ATR-209, comparison of 
meridional outside face sheet stresses 
along diameter of symmetry (unpub- 
lished data refers to a finite difference 
method) . 

A %= (average pressure1 

Figure 14. - ATR-209, comparison of 
meridional membrane s t resses  along 
diameter of symmetry (unpublished data 
refers to a finite difference method). 

Example 2 - Torispherical Shell 
Under Distributed Loading 

This example problem served pri- 
marily to demonstrate the convergence of 
the stiffness matrix solution presented in 
this paper. Many different grid patterns 
and grid densities were investigated. The 
s t resses  were compared previously in ex- 
ample 1 and were not significantly differ- 
ent in example 2. Thus, in reference 7 
the convergence was discussed in terms of 
displacement relative to the shell surface. 

Little discernible difference could be 
found in the various grid patterns. It was 
concluded that the method would yield sat- 
isfactory results for this structure without 
attendant convergence problems . 
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Example 3 - Torispherical Shell Under Water Impact 

The most severe loading of the Apollo aft heat-shield substructure occurs during 
the water landing. The critical internal loading is the R coordinate shear at the bolt 
circle. The command-module attitude just prior to impact is shown in figure 11. The 
effect of pitch angle p on the impact loading and the relationships of pressure-time- 
wetted radii are illustrated in figure 12. A pseudostatic problem was  defined by se- 
lecting a particular time after impact and noting the associated pressure-wetted radius 
shown in figure 12. A pitch angle of 15' and a wetted radius of 20 inches were run in 
the example (fig. 16). This condition occurs 0.003 second after impact, and there is 
a pressure of 150 psi over the circular area. 

Critical values of shear occurred in the core at the bolt circle. Thus, in addition 
to a comparison of displacements normal to the surface (fig. 17), a comparison of core 
shear at the bolt circle was made (fig. 18). The displacement correlation with the 

+-++- 
e = i e o O  1 e=oq 

Figure 16. - Water impact area location 
relative to bolt circle of the Apollo aft 
heat shield. 

r 

0 - Reference 9 
- Present research 

0 

-2 

-3 

dis- 
placement along axis of symmetry 
of the Apollo aft heat shield. 

u1 Figure 17. - Water impact, 

Shear outside 

5 

Reference 9 
Present research 

-3 L 
Figure 18.- Water impact, shear at the 

bolt circle of the Apollo aft heat 
shield. 
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results from reference 9 was fair. A comparison of the external reactions from ref- 
erence 9 with the external reactions from the present research at the bolt circle was 
excellent. Difficulty was encountered when the internal s t resses  of the structural 
model were compared with those of the actual structure. 

The support at the bolt circle of the actual structure is made up of 59 bolts, each 
spaced at 6.2 inches with a free span of less  than 3 inches. The free-span distance 
from node point to node point along the bolt circle on the structural model was 
16.4 inches. Circumferential shear occurred on the structural model which was known 
to be at variance with the actual structure. In the calculation of core shear, this 
circumferential shear was redistributed in the same proportion as the meridional core 
shear. The applied load is introduced at the node points, and a portion of the water- 
impact load must be placed at the support node points. Thus, it is necessary to intro- 
duce this portion of the core shear into the final core shear. Each joint was in 
equilibrium and this equilibrium was maintained in the resolution of the above factors 
to obtain core shear. 

Example 4 - Shallow Spherical Shell at -150' F 

A closed-form solution under cold-soak (- 150" F) conditions of a shallow spheri- 
cal cap of stainless-steel sandwich substrate covered with a 1.84-inch-thick ablator 
was reported in reference 9. The equations for the closed-form solution were derived 
in reference 9. The comparison of the displacement normal to the shell surface with 
comparable values by the present method was excellent (fig. 19). The displacement 
values of reference 9 were somewhat larger than the values obtained in the closed-form 
solution. 

Example 5 - Torispherical Shell at -150" F and at Reentry 

The comparison of u 

conditions is shown in figure 20. 

displacements for the torispherical shell under cold-soak 1 
The values are uniformly less than those of the 

NASA-S-67-536 

P l V  

e = m o "  1 e- 0- 

I i I 20 10 c 10 20 E l  

-2 1 I Figure 20. - Cold-soak condition, 
Figure 19. - Cold-soak condition, 

u1 displacement along axis of 
symmetry of the Apollo aft heat 
shield (correlation with a closed- 
form solution). 

u1 displacement along axis of sym- 
metry of the Apollo aft heat shield. 
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analysis of reference 9. The correlation was considered to be satisfactory and com- 
patible with the correlation shown in figure 19. 
agreement with the closed-form solution in figure 19. Consequently, it should be ex- 
pected that the analysis of reference 9 would indicate a slightly more flexible struc- 
ture. 

The present analysis showed excellent 

A comparison of the 'p normal stresses in the outside face of the ablator is 
shown in figure 21, while the 'p normal stresses in the inner face sheet of the sub- 
strate obtained from the analyses of reference 9 and of the present research are illus- 
trated in figure 22. The EcrT actionsarevery dependent on grid s izeas  theyrepresent 
the fixed-ended conditions of a curved beam element under thermal loading. In the 
limit, as the grid size becomes more dense, the thermal stress would approach the 
value Ea T. It thus appears that satisfactory displacements a r e  possible in thermal 
problems without a comparable correlation of stresses.  

I 
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- 

Figure 21. - Cold-soak condition, ablator 
normal s t ress  in the 'p direction along face sheet normal s t ress  along axis of 
axis of symmetry of the Apollo aft heat symmetry of the Apollo aft heat shield. 
shield. 

Figure 22. - Cold-soak condition, inner 

The displacements .experienced during 
the reentry thermal loading were an order 
of magnitude less  than those which occurred 
during the cold-soak (-150" F) thermal load- 
ing. Two different grid patterns were run 
to represent the analysis of the reentry 
case. The solutions were essentially iden- 
tical (fig. 23); thus, a convergent solution 
was obtained for the present analysis. The 
larger percentage differences in this case 
between the results of the analysis of ref - 
erence 9 and the present analysis a r e  un- 
explained. 
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RECOMMENDATIONS FOR FURTHER RESEARCH 

There are several avenues of research which may be pursued to improve the 
procedure. These may be divided into three categories: 
(2) application of the procedure to a greater variety of structures to determine the lim- 
itations of the procedure, and (3) more efficient use of the digital computer. 

(1) refinement of the theory, 

The coupling of the biaxial s t resses  has been mentioned earlier in this section. 

A possible 
To effect a tractable solution, it was  necessary to assume equal biaxial s t resses  in the 
sizing of the axial load-carrying capability of the typical beam elements. 
approach to this problem would be first to assume equal stresses in the meridional and 
circumferential directions, and then to use the s t resses  obtained to size axial capabil- 
ity for a second solution. This process could be repeated until the desired accuracy 
was  obtained. 

It has been assumed that the change in geometry due to loading of the structure 
would have negligible effect on the solution. The influence of a generalized beam- 
column effect has been neglected. The improvement in the effectiveness of the pro- 
gram would be most noticeable in structures loaded near the buckling point. Thermal 
effects in reference 7 were limited to axial restraint and to restraint of the moment 
due to a temperature gradient through the thickness. The effect of the temperature 
variation in the shell midsurface was approximated in that each beam element was at 
a temperature constant in the cp and 8 coordinates, but variable in the R coordi- 
nate. The temperature at any location on the structure was  actually an approximation 
of a three-dimensional temperature variation, since the R variation in temperature 
was  represented by multiple-stepped layers. Additional research could be directed 
toward more sophisticated thermal s t ress  representation. 

In the discussion of the results, it was noted that the thermal loads at the fixed 
ends of the beam elements a re  very dependent on grid size. 
ommended to seek a practical grid density at which this problem would diminish to 
engineering acceptance. 

Further research is rec-  

Curved beam elements were used in the present study. The displacement of the 
elastic axis due to a curved-beam effect was  found to be negligible for the example 
structures (ref. 11) and was  not included in this study. In structures which would re-  
quire this consideration, the theory and computer programing a re  straightforward. 

A modified von Karman membrane analogy was  used to calculate the torsional 
capability of the beam elements in the present research. It is recommended that an 
experimental study of laminated composite beams be undertaken to improve the ap- 
proach to torsional stiffness representation. 

The exploration and extension of the program will have to be preceded by a 
learning period in which experience in the use of the computer program is attained. 
The good results experienced in the use of the present method on the Apollo aft heat- 
shield substructure were dependent on good structural idealization and realistic bound- 
ary conditions. The beam network may work satisfactorily for a wide range of shell 
structures, but this can only be determined through the application of the computer 

23 



program to many more structures than demonstrated by the example problems. Once 
the limitations of the computer program a r e  understood and confidence in its use has 
been established, it would be possible to extend the program into the areas of linear 
elastic stability (ref. 12) and linearized plasticity (ref. 13). Both of these areas were 
outside the scope of the study presented in this report, but they are noteworthy direc- 
tions in which further research would prove beneficial. 

CONCLUSIONS 

The stiffness matrix solution yielded highly satisfactory results for the Apollo 
aft heat-shield substructure. Success was achieved primarily because of the adequacy 
of the structural idealization. The frame networks of beam elements used to represent 
the shells of the example problems were demonstrated to be adequate for engineering 
purposes. Experience with the program will be required to establish the full range of 
structures which may be validly analyzed. 

To effect tractable solutions of complex structures, it is necessary to make en- 
gineering compromises in all methods. The effect of Poisson's ratio was not com- 
pletely accurate in the present report, but it was sufficiently accurate to obtain good 
engineering results. A plane stress condition was assumed in order that beam element 
stiffness matrices might be calculated; that is, the meridional and circumferential 
s t resses  were assumed equal so that the beam elements might be sized to reflect the 
Poisson effect. The use of concentrated loads to simulate a distributed load system 
could lead to difficulty if  the grid size were too coarse. The assumption that the 
deformed geometry does not affect the solution ignores the effect of generalized beam- 
column action. Incorporation of this effect in linear elastic stability analysis has been 
accomplished by R. H. Gallagher and Joseph Padlog. 

The attainment of a convergent solution for the Apollo aft heat shield was easily 
accomplished with coarse grid patterns. It is not expected that an indefinite refine- 
ment of the grid would lead to the "exact" solution. The adequacy of the beam ele- 
ments to represent the idealized structure will break down in the limit. The use of 
extreme aspect ratios in the selection of grid patterns led to some difficulty in the sat- 
isfaction of equilibrium equations. This difficulty was not serious in the example prob- 
lems but should be recognized. The limitations discussed did not adversely affect the 
structural analysis of the Apollo command module aft heat shield. It is concluded that 
composite shells of similar geometry and loadings may be successfully analyzed with 
engineering accuracy. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, January 20, 1967 
914- 5020-01-72 
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APPENDIX A 

FLEXIBILITY MATRIX 

The details of the development of the flexibility matrix fgB were not essential 
Therefore, appendix A was des- to the general development in the section on theory. 

ignated for the derivation of f BB' 

Four structural elements were used in the analysis. It is emphasized that all 
elements were of the same structural type, that is, laminated beams. 
ment was assumed to carry six generalized actions (three forces and three moments). 
The division into four types was necessary because of the variation in geometry of the 
example structures. 
of equations for all flexibility calculations. Type 1 and type 2 beams were on the 
sphere in the meridional and circumferential directions, respectively. 
type 4 beams were  on the torus in the meridional and circumferential directions, 
respectively. 

Each beam ele- 

The redefinition of geometry made it possible to use a single se t  , 

Type 3 and 

In the determination of the structural model, it was assumed that each beam ele- 
It was also assumed ment represented one-half of the area on either side of the beam. 

that the Poisson effect could be introduced into the present method through the modifi- 
cation of the Ci terms. The bending stiffness was increased by ~ and the axial 

stiffness by l-u. 
2 1 - u  1 

The evaluation of the stiffness data is to a great extent self-explanatory; however, 
an explanation of the effect of temperature on the stiffness of the elements is in order. 
The specific treatment of the effect of temperature on the stiffness of the beam ele- 
ments in the Apollo command module aft heat-shield substructure is discussed in this 
appendix; however, the discussion is applicable to a general class of composite shell 
structures. The composite nature of the structure is shown in the exploded view of 
figure 2. The steel sandwich substructure was  at a constant temperature, but the abla- 
tor temperature varied in a parabolic manner from the temperature of ablation 
(1000" F) at the outside surface to a temperature Tb at the bond. The step-function 
approximation of temperature is shown in figure 3. In the range of temperatures en- 
countered, the moduli of the steel substrate were not significantly affected. However, 
the small effect (approximately 10-percent reduction at 600" F from room temperature 
values) was incorporated into the computer program. 
the bond and ablative layers were very temperature-dependent. Their moduli and the 

The mechanical properties of 
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steel substrate moduli were represented in the computer program as polynomials in 

the temperature. The equation for the modulus of rigidity of the core Gc was  an em- 
pirical formulation, and is based on the gross cross  section of the core. Hoff (ref. 14) 
presents a formal derivation of Gc but the results did not justify the increased com- 

plexity of its use. 

1 

In the calculation of the member stiffness, the composite nature of the structure 
made it necessary to associate each laminate with its correct moduli. The moduli 
were temperature-dependent and had to be considered in the calculation of the centroi- 
dal coordinate E. 
troidal R coordinate (E) was obtained by calculating the movement AR from R 

The R coordinate to the outside face sheet was RB, and the cen- 

B' 

The moduli and geometry for  the beam elements were obtained by averaging the 
terminal values, that is, the values at the joints. A discussion of the method used to 
obtain the torsional stiffness of the typical structural element appears at the end of 
this appendix. 

BB Formation of Beam Element Flexibility Matrix, 

IfBl,B1 fBl,B2 fBl ,B3 f Bl,B4 f Bl ,B5 f Bl,B6 

IfB2, B1 fBZ, B2 fB2, B3 fB2, B4 fBZ, B5 fB2, B6 

fB3, B1 fB3, B2 fB3, B3 fB3, B4 fB3, B5 fB3, B6 

fB4,B1 fB4,B2 fB4,B3 fB4,B4 fB4,B5 fB4,B6 
f~~ = 

fB5, B1 fB5, B2 fB5, B3 fB5, B4 fB5, B5 fB5, B6 

fB6, B1 fB6, B2 fB6, B3 fB6, I34 fB6, B5 fB6, B6 - 1 

'The equation for the modulus of rigidity of the core was developed by North 
American Aviation. 
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It was stated in the section on theory that the flexibility matrix fBB would yield 
the stiffness matrix kBg when inverted. The elements of fBB were  obtained through 
the use of the auxiliary load method (virtual work). The load diagrams resulting from 
the application of unit loads on a type 1 element AB, free at end B and fixed at end A, 
are shown in figure 5. These load expressions were inserted in the displacement equa- 
tions of reference 6. As quoted from reference 6, the displacement is as follows: 

u = / , x x m + / n y x a + /  n z X- NZdl .  
r  EA^ I- GAY I- GA' 

F F F 

x ~ ~ d 1 + /  m z x -  MZdl (A2) 
E Iy El? r m X- 

GI" + I -  F F F 

where 

AX, Ay, AZ are the cross-sectional areas associated with the x, y, z actions 

dl is the incremental length along the beam 

E is the modulus of elasticity 

G is the modulus of rigidity 

Ix, Iy, Iz are the moments of inertia associated with the x, y, z actions 

MX is the twisting moment about the x-axis 

My is the bending moment about the y-axis 

MZ is the bending moment about the z-axis 

NX is the axial force in the x direction 

Ny is the shear force in the y direction 

NZ is the shear force in the z direction 

n is the unit quantity of Nx, NY, N', M ~ ,  MY, M' at r 
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u is the displacement at r r 

signifies integration around the whole frame 

A summary of the flexibility equations appears in table A-I. The definition of the Ci 

expressions appearing in the table are shown later in this appendix. 

Type 1 and Type 3 Members, Ci 

2 1 - v  c1 = - 2E6 
2 1 - v  c2 = - 2ER 

1 
c3=zGJ, 

i c =- 
4 2GsR 

1 
c5=zcs, 

i - v  c =- 
6 2ES 

(A3 a) 
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C13 = Cll + 2c7 - 4C8 

- 2C8 ‘14 = ‘11 

C15 = 1 - cg (A301 

C16 = C8 - c7 (A3P) 

Type 1 and Type 3 Member Stiffness Data (See fig. 4) 

ita 2 

E1 e = 2 Ea(Ti&(93 +p Ea(Ti)bV (-AR + -F - &) 
i= 1 i= 1 

+ Ebbqk (‘ - ART + EslfpbVkR + $r + tfpb,Gs + AR - %r] 
29 



3 

+ 2 E  

t ]  
+Ebtb s fp 

b 

EIR - - ‘ [e i= 1 

E 
=” 

1.54 
Gc = 2.43 ( 2 ) G  

GJe (See section on calculation of torsional stiffness) 

GSR = b cp Ga(TJk + Gb$, + Gc(ts - 2tfp) + 2G s t fP 1 
Li= 1 J 

ES = b [$ .a(.,,: + Eb$, + 2E s t fP ] 
i= 1 

cp 

Type 2 and Type 4 Members, Ci 

2 
C = 2EIR 

1 - V  

1 

2 c =- 
2 2EI 

cp 

1 - v  

1 c =- 
3 2GJ, 

(A13a) 

(A 13b) 

(A13c) 
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1 c =- 

'p 
4 2GS (A13d) 

1 c =- 
5 2GSR 

1 - v  c -- 6 -  2ES 

c = e  7 AB 

C = sin OAB 8 

AB c = C O S  e 

Cl0 = BAB - sin BAB COS BAB = C7 - C8Cg 

9 

Cll = eAB + sin BAB COS BAB = C7 + C 8 9  C 

C12 = 2 cos OAB - 2 + sin OAB = 2Cg - 2 + C8 2 2 

C13 = CI1 + 2c7 - 4C8 

C14 = Cll - 2C8 

C15 = 1 - cg 

C16 = C8 - c, 

(A13e) 

(A13f) 

(A13d 

(A13h) 

(A13i) 

W 3 j )  

(A13k) 

(A 131) 

(A13m) 

(A13n) 

(A130) 

W 3 P )  
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Type 2 and Type 4 Member Stiffness Data (See fig. 4) 

GS = be 
cp 

c 1 

n 

cGa(Ti) ,  ta + Gb$, + 2Gstfp 
i= 1 

3 

EIR = ba [f Ea(Ti): + Ebtb + 2 E  s t J  fp 
i= 1 

i= 1 

+Ebtbb@ (" 7 - AR)'+ Estfpbe[AR + &r + kS + AR - $)y (A15) 

Note: Use AR as defined for type 1 beams. 

E G=m 
GJe (See section on the calculation of torsional stiffness) 

I- 1 

L -1 

I- 7 

= ' e [  TEa(Ti) k + Ebtb + 2 E  s t ]  fp 
i=l 
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Calculation of Torsional Stiffness 

The conventional torsion formula is limited to circular cross sections. Prandtl 
developed a membrane analogy theory (ref. 15) for noncircular cross  sections. This 
enables a valid use of the conventional torsion formula with the introduction of a geo- 
metric factor Je. The modulus of rigidity G is constant throughout the cross  section 

a cross  section, and of a 
(ref. 16). The foregoing 

in the Prandtl theory. In the present application, the typical structural element was  
composed of a laminated rectangular cross  section, with each laminate possessing an 
arbitrary modulus of rigidity. To account for the different moduli of the laminates, 
the modulus of rigidity of the gross cross  section was  taken to be proportional to (1) the 
laminate cross-sectional area, (2) the laminate modulus of rigidity, and (3) the distance 
from the center of twist in the direction of the shortest dimension of the cross  section. 
This was compatible with the assumption of an equal angle of twist for all laminates in 

linear shear stress distribution across  the shortest dimension 
may be expressed mathematically as 

and its application to the Apollo com 

-I 
G.1.d. 

G I 4 ' I -  385 909 = 165 086 
e c, 2.337624 

.mand- -module aft heat shield is found in figure A- 1. 
The use of the equivalent modulus of rigidity 
Ge in the modified Prandtl thecry follows. 

In reference 15 

(A211 
3 MT = klGO(2a) 2b 

or in the notation of the present research 

in. (A221 

Solving for v, it is found that 

p5 (type 1 member) 
Abiater may be mirllilayered for lempefalure dependence. 

' = G  k (b )Titi 
e l  'p 

(A231 
Figure A-1. - Example calculation 

of torsional stiff ness. 
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A comparison with the well-known torsional formula rp = - reveals G,J, 
GJe 

to equal G k 

below. 

ti. The constant kl is taken from reference 15 and is tabulated 

11.0 

1 3  

00 

0.1406 

0.166 

0.196 

0.229 

0.249 

0.263 

0.281 

0.291 

0.312 

0.333 
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TABLE A-I. - SUMMARY O F  DISPLACEMENT INFLUENCE COEFFICIENTS 

R sin cp used for  type 2 and type 4 beams 1 R used for type 1 and type 3 beams f 
1 

- 
RC6C10 

+RC4C11 

+(%13 c c 

- 
RC6Cg2 

2 - 
-RC4C8 

+ ( R ) ~ c ~ c ~ ~  
~ 

0 

0 

0 

-. . .. - 

-2 (%)2C1 c1 

-. ~~ 

4 

0 

0 

.. _ _  
2 -(R) C3C12 

+(R)2C2C82 

. - - 

- 
RC3C10 

+RC2Cll 

- 
R C 3 C t  

2 - 
-RC2C8 

0 

- 2 (R)2C c 

0 

0 

0 

2Rc1c, 
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APPENDIX B 

TRANSFORMATION MATRICES 

A congruent transformation was used to obtain the total member stiffness matrix 
once the stiffness submatrix kBB was obtained from the inversion of the flexibility 

matrix fBB. A typical type 1 beam element is shown in figure 6. A system of dis- 

placements uB induced actions pBB at end B and pAB at end A, such that 

The actions pBB were expressed in the axes at end B, while actions pAB were ex- 

pressed in the axes at end A. These two sets of actions formed a system of equilib- 
rium equations acting on the member AB. B the actions pBB a r e  transformed to the 
axes at end A, the equilibrium equations are 

and thus 

Therefor e 

PAB + A~~~~~ = O 

PAB = - A ~ ~ ~ ~ ~  

k u = - A  k u AB B AB BB B 

034) 

and 
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Similarly 

kBA = -A BA k AA 037) 

The stiffnesses kAA and kBB a r e  also related to one another. From the re- 
ciprocal law it is known that kBA = k i B ,  thus 

(B8) 

Since the transpose of the product of two matrices is equal to the product of their 
transposes inreverse  order 

and 

"k7 A? 
k ~ = A ~ ~  BB AB 

Since 

AB*-' = AAB 

and 

(B13) = A  k A' kAA AB BB AB 

The above submatrix stiffness definitions may be collected into a single matrix 
expression for the actions on the member AB in terms of the end displacements uA 
and u B' 
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(B14a) 

A similar approach was used in the calculation of fBB for type 2 beam elements. 

An additional congruent transformation was required to orient the forces and displace- 
ments with the joint orientation. The relationship of the coordinates in the type 2 beam 
formulas to the joint coordinates is shown in figure 7. The transformation matrix 
manipulation follows. 

i") PB' =PA 0 
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The type 1 beams which meet at the apex required an additional congruent trans- 
formation of actions and displacements to make each compatible with the single set of 
joint coordinates at zero. The zero joint is oriented such that the local coordinate 
makes an angle of 0" with the 8 coordinate of the fixed reference point of the shell. 
This is illustrated as 

Transform actions at end A to the zero joint orientation 

- AOA 1 [AA E} 
- O I k~~ BB 

Then transform the displacements at end A to the zero joint orientation 

(B23) 
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I 

The calculation of the thermal load vector required rotational transformations 
for all type 2 beam elements and those type 1 beam elements common to the apex. 
The use of the required transformations is as follows: 

Type 1 beam elements 

m p e  2 beam elements 

The transformations discussed above required the use of special transformation 
matrices. These matrices are developed in detail in reference 7. 

40 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Radkowski, P. P. ; Davis, R. M. ; and Bolduc, M. R. : Numerical Analysis of 
Equations of Thin Shells of Revolution. ARS J., vol. 32, no. 1, Jan. 1962, 
pp. 36-41. 

Sepetoski, W. K. ; Pearson, C. E. ; Dingwell, I. W. ; and Adkins, A. W. : A 
Digital Computer Program for  the General Axially Symmetric Thin-Shell 
Problem. J. Appl. Mech., vol. 29, no. 4, Dec. 1962, pp. 655-661. 

Steele, C. R. ; and Hartung, R. F. : Symmetric Loading of Orthotropic Shells of 
Revolution. J. Appl. Mech., vol. 32, no. 2, June 1965, pp. 337-345. 

Cohen, G. A. : Computer Analysis of Asymmetrical Deformation of Orthotropic 
Shells of Revolution. AIAA, vol. 2, no. 5, May 1964, pp. 932-934. 

Radkowski, P. P. : Stress Analysis of Orthotropic Thin Multilayer Shells of 
Revolution. Preprint 2889 -63, AIAA, Apr. 1963. 

Hall, A. S. ; and Woodhead, R. W. : Frame Analysis. John Wiley & Sons, Inc. .. 
19.61. 

Stebbins, Frederick Jean: Stiffness Matrix Solution for Shells of Revolution 
Possessing Variable Thickness Heat Protection. Ph. D. Dissertation, Texas 
A&M Univ., 1966. 

Shackett, J. M. : Structural Test  Report on the Command Module Aft Heat Shield 
Substructure and Aft Section of the Inner Structure (ATR 209-1 & -2). 
SID 65-358, North American Aviation, Inc., March 1965. 

Gallagher, R. H. ; Gellatly, R. A. ; and Batt, J. R. : Structural and Dynamic 
Analysis of the Apollo Aft Heat Shield. Report No. D 7218-933004, Bell 
Aerosystems Company, Dec. 1965. 

FlGgge, Wilhelm: Stresses in Shells. Springer -Verlag, Berlin/Gottingen/ 
Heidelberg, 1960. 

Roark, Raymond J. : Formulas for Stress and Strain. Third ed. ,  McGraw-Hill 
Book Co., Inc., 1954. 

Gallagher, R. H. ; and Padlog, Joseph: Discrete Element Approach to Structural 
Instability Analysis. A M ,  vol. 1, no. 6, June 1963, pp. 1437-1439. 

Phillips, Aris: Introduction to Plasticity. The Ronald Press Company, N. Y. ,  
1956. 

Hoff, Nicholas J. : The Analysis of Structures. John Wiley & Sons, Inc., 1956. 

41 



15. Timoshenko, S. ; and Goodier, J.  N . :  Theory of Elasticity. Second ed. ,  
McGraw-Hill Book Co. ,  Inc., 1951. 

16. Shanley, F. R. : Strength of Materials. McGraw-Hill Book C o . ,  Inc., 1957. 

42 NASA-Langley, 1967 - 32 S- 129 



r- 

<'The aeronautical and space activities of the United States shall be 
conduded so a to contribute . . . to the expansion of human Rnowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results tbereof ." 

-NATIONAL AERONAUnCS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications indude Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Details on the availabilify of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washingion, D.C. PO546 


